3.4.36 \(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (b \cos (c+d x))^{5/2}} \, dx\) [336]

Optimal. Leaf size=120 \[ \frac {(A+2 C) \tanh ^{-1}(\sin (c+d x)) \sqrt {\cos (c+d x)}}{2 b^2 d \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{2 b^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}} \]

[Out]

1/2*A*sin(d*x+c)/b^2/d/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(1/2)+B*sin(d*x+c)/b^2/d/cos(d*x+c)^(1/2)/(b*cos(d*x+c)
)^(1/2)+1/2*(A+2*C)*arctanh(sin(d*x+c))*cos(d*x+c)^(1/2)/b^2/d/(b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {18, 3100, 2827, 3852, 8, 3855} \begin {gather*} \frac {(A+2 C) \sqrt {\cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 b^2 d \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{2 b^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(b*Cos[c + d*x])^(5/2)),x]

[Out]

((A + 2*C)*ArcTanh[Sin[c + d*x]]*Sqrt[Cos[c + d*x]])/(2*b^2*d*Sqrt[b*Cos[c + d*x]]) + (A*Sin[c + d*x])/(2*b^2*
d*Cos[c + d*x]^(3/2)*Sqrt[b*Cos[c + d*x]]) + (B*Sin[c + d*x])/(b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Cos[c + d*x]])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 18

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m - 1/2)*b^(n + 1/2)*(Sqrt[a*v]/Sqrt[b*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && ILtQ[n - 1/2, 0] && IntegerQ[m + n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (b \cos (c+d x))^{5/2}} \, dx &=\frac {\sqrt {\cos (c+d x)} \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx}{b^2 \sqrt {b \cos (c+d x)}}\\ &=\frac {A \sin (c+d x)}{2 b^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \int (2 B+(A+2 C) \cos (c+d x)) \sec ^2(c+d x) \, dx}{2 b^2 \sqrt {b \cos (c+d x)}}\\ &=\frac {A \sin (c+d x)}{2 b^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {\left (B \sqrt {\cos (c+d x)}\right ) \int \sec ^2(c+d x) \, dx}{b^2 \sqrt {b \cos (c+d x)}}+\frac {\left ((A+2 C) \sqrt {\cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{2 b^2 \sqrt {b \cos (c+d x)}}\\ &=\frac {(A+2 C) \tanh ^{-1}(\sin (c+d x)) \sqrt {\cos (c+d x)}}{2 b^2 d \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{2 b^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}-\frac {\left (B \sqrt {\cos (c+d x)}\right ) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{b^2 d \sqrt {b \cos (c+d x)}}\\ &=\frac {(A+2 C) \tanh ^{-1}(\sin (c+d x)) \sqrt {\cos (c+d x)}}{2 b^2 d \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{2 b^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 69, normalized size = 0.58 \begin {gather*} \frac {\sqrt {\cos (c+d x)} \left ((A+2 C) \tanh ^{-1}(\sin (c+d x)) \cos ^2(c+d x)+(A+2 B \cos (c+d x)) \sin (c+d x)\right )}{2 d (b \cos (c+d x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(b*Cos[c + d*x])^(5/2)),x]

[Out]

(Sqrt[Cos[c + d*x]]*((A + 2*C)*ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^2 + (A + 2*B*Cos[c + d*x])*Sin[c + d*x]))/(2
*d*(b*Cos[c + d*x])^(5/2))

________________________________________________________________________________________

Maple [A]
time = 0.21, size = 151, normalized size = 1.26

method result size
default \(-\frac {\left (A \left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (-\frac {-1+\cos \left (d x +c \right )+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-A \left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (-\frac {-1+\cos \left (d x +c \right )-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )+4 C \left (\cos ^{2}\left (d x +c \right )\right ) \arctanh \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-2 B \cos \left (d x +c \right ) \sin \left (d x +c \right )-A \sin \left (d x +c \right )\right ) \left (\sqrt {\cos }\left (d x +c \right )\right )}{2 d \left (b \cos \left (d x +c \right )\right )^{\frac {5}{2}}}\) \(151\)
risch \(-\frac {i \left (A \,{\mathrm e}^{2 i \left (d x +c \right )}-A -4 B \cos \left (d x +c \right )\right )}{2 b^{2} \sqrt {b \cos \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) d}-\frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) \left (A +2 C \right ) \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 b^{2} \sqrt {b \cos \left (d x +c \right )}\, d}+\frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) \left (A +2 C \right ) \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 b^{2} \sqrt {b \cos \left (d x +c \right )}\, d}\) \(154\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(A*cos(d*x+c)^2*ln(-(-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))-A*cos(d*x+c)^2*ln(-(-1+cos(d*x+c)-sin(d*x+c)
)/sin(d*x+c))+4*C*cos(d*x+c)^2*arctanh((-1+cos(d*x+c))/sin(d*x+c))-2*B*cos(d*x+c)*sin(d*x+c)-A*sin(d*x+c))*cos
(d*x+c)^(1/2)/(b*cos(d*x+c))^(5/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 820 vs. \(2 (104) = 208\).
time = 0.70, size = 820, normalized size = 6.83 \begin {gather*} \frac {\frac {8 \, B \sqrt {b} \sin \left (2 \, d x + 2 \, c\right )}{b^{3} \cos \left (2 \, d x + 2 \, c\right )^{2} + b^{3} \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, b^{3} \cos \left (2 \, d x + 2 \, c\right ) + b^{3}} - \frac {{\left (4 \, {\left (\sin \left (4 \, d x + 4 \, c\right ) + 2 \, \sin \left (2 \, d x + 2 \, c\right )\right )} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) - 4 \, {\left (\sin \left (4 \, d x + 4 \, c\right ) + 2 \, \sin \left (2 \, d x + 2 \, c\right )\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) - {\left (2 \, {\left (2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \cos \left (4 \, d x + 4 \, c\right ) + \cos \left (4 \, d x + 4 \, c\right )^{2} + 4 \, \cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (4 \, d x + 4 \, c\right )^{2} + 4 \, \sin \left (4 \, d x + 4 \, c\right ) \sin \left (2 \, d x + 2 \, c\right ) + 4 \, \sin \left (2 \, d x + 2 \, c\right )^{2} + 4 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) + 1\right ) + {\left (2 \, {\left (2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \cos \left (4 \, d x + 4 \, c\right ) + \cos \left (4 \, d x + 4 \, c\right )^{2} + 4 \, \cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (4 \, d x + 4 \, c\right )^{2} + 4 \, \sin \left (4 \, d x + 4 \, c\right ) \sin \left (2 \, d x + 2 \, c\right ) + 4 \, \sin \left (2 \, d x + 2 \, c\right )^{2} + 4 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) + 1\right ) - 4 \, {\left (\cos \left (4 \, d x + 4 \, c\right ) + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) + 4 \, {\left (\cos \left (4 \, d x + 4 \, c\right ) + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )\right )} A}{{\left (b^{2} \cos \left (4 \, d x + 4 \, c\right )^{2} + 4 \, b^{2} \cos \left (2 \, d x + 2 \, c\right )^{2} + b^{2} \sin \left (4 \, d x + 4 \, c\right )^{2} + 4 \, b^{2} \sin \left (4 \, d x + 4 \, c\right ) \sin \left (2 \, d x + 2 \, c\right ) + 4 \, b^{2} \sin \left (2 \, d x + 2 \, c\right )^{2} + 4 \, b^{2} \cos \left (2 \, d x + 2 \, c\right ) + b^{2} + 2 \, {\left (2 \, b^{2} \cos \left (2 \, d x + 2 \, c\right ) + b^{2}\right )} \cos \left (4 \, d x + 4 \, c\right )\right )} \sqrt {b}} + \frac {2 \, C {\left (\log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} + 2 \, \sin \left (d x + c\right ) + 1\right ) - \log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) + 1\right )\right )}}{b^{\frac {5}{2}}}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/4*(8*B*sqrt(b)*sin(2*d*x + 2*c)/(b^3*cos(2*d*x + 2*c)^2 + b^3*sin(2*d*x + 2*c)^2 + 2*b^3*cos(2*d*x + 2*c) +
b^3) - (4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 4*(si
n(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (2*(2*cos(2*d*x +
2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*
c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c))) + 1) + (2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x +
 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c)
 + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c)))^2 - 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x
+ 2*c) + 1)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x + 2*c) +
1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*A/((b^2*cos(4*d*x + 4*c)^2 + 4*b^2*cos(2*d*x + 2*c)^2
 + b^2*sin(4*d*x + 4*c)^2 + 4*b^2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*b^2*sin(2*d*x + 2*c)^2 + 4*b^2*cos(2*d
*x + 2*c) + b^2 + 2*(2*b^2*cos(2*d*x + 2*c) + b^2)*cos(4*d*x + 4*c))*sqrt(b)) + 2*C*(log(cos(d*x + c)^2 + sin(
d*x + c)^2 + 2*sin(d*x + c) + 1) - log(cos(d*x + c)^2 + sin(d*x + c)^2 - 2*sin(d*x + c) + 1))/b^(5/2))/d

________________________________________________________________________________________

Fricas [A]
time = 0.42, size = 239, normalized size = 1.99 \begin {gather*} \left [\frac {{\left (A + 2 \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{3} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, {\left (2 \, B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, b^{3} d \cos \left (d x + c\right )^{3}}, -\frac {{\left (A + 2 \, C\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{3} - {\left (2 \, B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, b^{3} d \cos \left (d x + c\right )^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*((A + 2*C)*sqrt(b)*cos(d*x + c)^3*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x +
c))*sin(d*x + c) - 2*b*cos(d*x + c))/cos(d*x + c)^3) + 2*(2*B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sqrt(cos(
d*x + c))*sin(d*x + c))/(b^3*d*cos(d*x + c)^3), -1/2*((A + 2*C)*sqrt(-b)*arctan(sqrt(b*cos(d*x + c))*sqrt(-b)*
sin(d*x + c)/(b*sqrt(cos(d*x + c))))*cos(d*x + c)^3 - (2*B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x
 + c))*sin(d*x + c))/(b^3*d*cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(5/2)/cos(d*x+c)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3005 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c))^(5/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(b*cos(c + d*x))^(5/2)),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(b*cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________